How to create a Content Studio Event handler object in C#.
Background

Content Studio version 4.5 build 1012 introduces a possibility to create custom event handler objects that will run synchronously on documents in any category that has such an event handler defined. These event handlers are COM objects that implements the ICSEventHandler COM-interface. With these event handlers you can create code that will be executed after that Content Studio has performed one of its standard events. In Content Studio version 4.5 build 1012 only the OnDocumentCreate, OnDocumentSave, OnDocumentApprove, OnDocumentDelete and OnDocumentDestroy events are implemented. Any developer with knowledge of COM or .NET COM interoperability can create these objects but they must be installed on the server by an administrator.

Declaring COM interfaces
Start Visual Studio 2005 and create a new c# project of the class library type and name it CSEventHandlers. On top of the default class file create a new using statement:
using System.Runtime.InteropServices;

Now you must define the ICSEventHandler and ICSCredentialsContainer interfaces. Since these are Com interfaces you must declare the so that .NET understands this and they must be identical to the interfaces declared in the original type library. The original Com interfaces are declared in the CSExtender.tlb (installed with Content Studio) file and has the following implementation expressed in the IDL-syntax:
 [object, uuid(9CC99632-9F63-4603-97C9-E84CC2DCCAD6),

 version(1.0),

 helpstring("ICSCredentialsContainer interface"),

 //nonextensible,

 //oleautomation

]

 interface ICSCredentialsContainer : IUnknown

 {

 [propget,

 id(0xA1),

 helpstring("Returns the name of account that is used to authenticate an external event call")

]

 HRESULT UserName([out,retval] BSTR *outValue);

 [propget,

 id(0xA2),

 helpstring("Returns the password of the account that is used to authenticate an external event call")

]

 HRESULT Password([out,retval] BSTR *outValue);

 };

 [object, uuid(80675850-973A-439f-8C71-047EC029B58F),

 version(1.0),

 helpstring("ICSEventHandler interface"),

 //nonextensible,

 //oleautomation

]

 interface ICSEventHandler : IUnknown

 {

 [id(0x30), helpstring("Defines a standard event handler for Content Studio syncronous server side events. Objects that implements this interface can be called by Content Studio on the server side")]

 HRESULT EventHandler([in] BSTR EventXMLArguments,

 [in] VARIANT Content,

 [in] ICSCredentialsContainer *Credentials,

 [in, out] VARIANT_BOOL *Cancel,

 [in, out] long* Status,

 [in, out] BSTR* StatusText);

 };

These definitions translate to the following .NET interface definitions:

[ComImport]

[Guid("9CC99632-9F63-4603-97C9-E84CC2DCCAD6")]

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

public interface ICSCredentialsContainer

{

 string UserName

 {

 [DispId(0xA1)]

 get;

 }

 string Password

 {

 [DispId(0xA2)]

 get;

 }

}

[ComImport]

[Guid("80675850-973A-439f-8C71-047EC029B58F")]

[InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

public interface ICSEventHandler

{

 [DispId(0x30)]

 void EventHandler([In, MarshalAs(UnmanagedType.BStr)] String
 EventXMLArguments,

 [In]object Content,

 [In,MarshalAs(UnmanagedType.Interface)]ICSCredentialsContainer
 Credentials,

 [Out, MarshalAs(UnmanagedType.VariantBool)] out bool Cancel,

 out int Status,

 [Out, MarshalAs(UnmanagedType.BStr)] out String ResultTexT);

}

Paste these interface definitions on top of the namespace declaration before any class declarations.
The next step will be to define a default interface for each event you like this component to implement. This declaration goes after the interfaces above and looks like this:

 [GuidAttribute("GUID")] //replace GUID with your own guid

 [InterfaceTypeAttribute(ComInterfaceType.InterfaceIsDual)]

 public interface _IOnDocumentApprove { }

Repeat this declaration for each event you like to implement and make sure that you change the interface name and the GUID. You easily create a new guid using the “Create GUID” command from the Tools menu.

Creating the event handlers
Each event handler should be declared as a public class in your component and each class should be marked for Com interoperability using the appropriate attributes. The ProgIdAttribute (in the form LIBRARY.CLASSNAME) is very important since the name you enter there will be used by Content Studio when creating the event handler, so make sure that this name is unique in your component and on the destination server.
 [ClassInterfaceAttribute(ClassInterfaceType.None)]

 [Guid("GUID")] //Replace with a unique GUID of your own

 [ProgIdAttribute("CSEventHandlers.OnDocumentApprove")]

 public class OnDocumentApprove :_IOnDocumentApprove,ICSEventHandler

 {

 public OnDocumentApprove() { }

 public void EventHandler(string EventXMLArguments,

 object Content,

 ICSCredentialsContainer Credentials,

 out bool Cancel,

 out int Status,

 out string StatusText)

 {

 string username = "";

 string password = "";

 try

 {

 //Get passed in username and password
 if (Credentials != null)

 {

 password = Credentials.Password;

 username = Credentials.UserName;

 }

 //The rest of the implementation goes here

 }

 catch(Exception e)

 {

 Status = -1;

 StatusText = e.GetType().ToString() + ": " + e.Message;

 Cancel = true;

 return;

 }

 //Everything is OK.

 Cancel = false;

 Status = 0;

 StatusText = "Success";

 }

 }

The EventXMLArguments parameter will contain an XML document that contain information about the event itself, object (document) that triggered the event and the caller. For EPT-documents the document’s content is supplied in the Content parameter.

The output parameters Cancel, Status and StatusText regulate how Content Studio will react to your event handler. If you set Cancel to true the whole Content Studio event will be rolled back and if you supply any other Status than zero an error message containing the StatusText will be displayed to the calling Content Studio user. You should provide thorough error handling and any error should be returned as Status other that zero and a StatusText message.
The Credentials parameter is an instance of the ICSCredentialsContainer interface. This parameter will be null if no password and username was defined in Content Studio for this event. If this interface is passed in you can use its username and password properties to obtain this data if you need it.
Before you build the COM object, we have to register the object for COM Interop. To do this, right click the project name in the Solution Explorer. Click Properties. Click Configuration ->Build. Expand the output section. Set the Register for “COM Interop” to true.
Indicate that your managed application will expose a COM object (a COM-callable wrapper) that allows a COM object to interact with your managed application.

In order for the COM object to be exposed, your class library assembly must also have a strong name. To create a strong name, use the utility SN.EXE or you can do this directly in the Signing tab of the assembly properties.

The XMLArguments parameter

Content studio fills this input parameter with useful data that can be used by the implementer to get information about the object that triggered the event and about the caller. This document has the following syntax:

<event type="27"

 name="OnDocumentCreate"

 msgid="F457B765-2404-4EA4-8B71-3FBF79BF191B">

 <timestamp>2006-01-31T14:22:16</timestamp>

 <connectionid>19</connectionid>

 <callerinfo userid="3"

 sid="S-1-5-21-1234567-1234567-1234567-1234"

 logonname="THECOMPANY\BOBBY"

 email="bobby@thecompany.se"

 fullname="Bobby Nelson"

 userkey="AAAAA2"

 sessionid="677090140"/>

 <objectdata>

 <documentid/>

 <documentname>My document</documentname>

 <filename/>

 <encoding>utf-8</encoding>

 <categoryid>242</categoryid>

 </objectdata>

</event>
Note: In the future it is quite probably that additional data will be supplied.

Installing the Event handler

Make sure that the destination server has the correct version of the .NET framework installed. After that create a folder for the resulting dll and its type library (.tbl –file) and copy the 2 files at that location. Now register the with the RegAsm.exe command utility that is a part of the .NET framework. You can find this file in the %WinDir%\Microsoft.NET\Framework\vvvvv (vvvvv is the actual version of the framework used) – library. After that you have registered the assembly you should restart the Content Studio Server 32 Com+ application.
Using the Event handler from Content Studio

On a Content Studio category, an administrator can assign Event Actions of different kinds and in our case; the kind of event handler is called Event Object. Set up a new Event Object handler for each of the event you like to handle and set its command to the ProgIdAttribute (in the form LIBRARY.CLASSNAME) you supplied for the class that handles the event.
